O.P.Code: 19EE0222

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech IV Year I Semester Supplementary Examinations June-2024 UTILIZATION OF ELECTRICAL ENERGY

(Electrical and Electronics Engineering)

Time: 3 Hours

11.06 2024

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1	ล	State and explain laws of illumination.	CO1	L2	6M
7		If a lamp of 200 cp is placed 1m below a plane mirror which reflects	CO1	L3	6M
		90% of light falling on it, determine illumination at a point 3m away			
		from the foot of the lamp which is hung 4m above ground.			
		OR			
2	a	Write short notes on polar curves and explain the Rousseau's	CO1	L2	6M
	-	construction for calculating MSCP of lamp.			
	b	A room measuring 30m×15m is to be illuminated by 10 lamps and the	CO1	L3	6M
	~	average illumination is to be 85 lux. Determine the MSCP of each lamp			
		if the utilization and depreciation factors are 0.5 and 0.8 respectively.			
		UNIT-II			
2		Describe direct and indirect core type furnace with neat sketches.	CO2	L2	6M
3	_	A slab of insulating material 150 sq cm in area and 1 cm thick is to be	CO2	L3	6M
	b	heated by dielectric heating. The power required is 400 W at 30×106			
		cps. Materials has permittivity of 5 and power factor of 0.05. Determine			1
		voltage necessary OR			
4	•	Explain briefly the types of electric arc welding.	CO2	L3	6M
4	a b	Discuss faraday's laws and applications of electrolysis in detail	CO2	L2	6M
	IJ	UNIT-III			
			CO3	L2	6M
5		What is the Classification of Electrical Drives?	CO3	L2	6M
	b	What is load equalization?	COS	LL	OIVI
		OR	CO3	L3	6M
6	a	How do you select a motor for an industrial application?			
	b	What are the advantages of group drive?	CO3	L2	6M

UNIT-IV

7 Discuss the characteristic features of a traction motor for effective traction CO4 L3 12M systems.

OR

8 a Discuss the speed-time curves for urban service.

CO4 L3 6M

6M

12iv.

CO₄

b A train has schedule speed of 60 km/hr between the stops which are 6 km apart. Determine the crest speed over the run assuming trapezoidal speed time curve. The train accelerates at 2 km/hr/sec and retards at 3 km/hr/sec. Duration of stops is 60s.

UNIT-V

9 Explain the calculations of tractive effort required for train propulsion.

CO5 L3 12M

OR

10 An electric train of weight 250 ton has eight motors geared to driving CO5 L4 wheels, each is 85 cm diameter. The tractive resistance is of 50/ton. The effect of rotational inertia is 8% of the train weight, the gear ratio is 4–1, and the gearing efficiency is 85% determine. The torque developed by each motor to accelerate the train to a speed of 50 kmph in 30 s up a gradient of 1 in 200.

*** END ***